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Abst ract

We prove that the gap in optimal value, between a mixed-integer
4

program in rationals and its corresponding linear programming

I relaxation, is bounded as the right-hand-side is varied. In addition,

a variant of value iteration is shown to construct subadditive functions

which resolve a pure-integer program when no dual degeneracy occurs.

These subadditive functions provide solutions to subadditive dual

programs for integer programs which are given hete , and for which the

values of primal and dual problems are equal.
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‘THE VALUE FUNCTION OF A
MIXED INTEGER PROGRAM: II

by

G.E. Blair acid R.G. Jeroslow

In this paper, we continue our study, begun in [2], of the

value function of a mixed-integer program. This function C provides

the value G(b) of the program

inf cx- + dy

(MI?) subject to Ax + By b

x, y > O

x integer

in variables x ( xi,..., x~),  y = (y1,...,y8), with right-hand-side

(r.h.s.) b = (bi~•••~
bm) and matrices 

A, B and vectors c,d conformally

dimensioned. G(b) is defined only for b feasible, i.e., b for which

the constraints of (NIP) are consistent.

In 121, we emphasized bounds on G(b) [2, Theorem 2.1], a

structure theorem for G(b) [2, Theorem 3.33, and the extendability

of G(b) [2 , Theorem 4.63. Here our emphasis is on the difference

k a
- I.
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2.

between C(b) and the value function L(b) of the linear programing

relaxation (LP) of (NIP) (see (LP) below) . We show that the gap in

value i. finite (Corollary 1.3) and that in certain regions S~ (defined

below) the gap function is subadditive (Theorem 2.6). Our investigation

of the gap function leads quite naturally to a subadditive dual program

for (NIP) (Theorem 2.4), which places the subadditive functions into a

more tractable class of functions than does an earlier subadditive dual

(see [6]).

We also show that the subadditive functions needed in our dual L
programs can all be obtained by value-iteration, which replaces a

subadditive function P~ by an improved function Fn+j that provides a

better value in the dual program, with finite convergence guaranteed

under many coimnonly-occurring hypotheses (Theorem 2.8) .

Throughout our work, we have a standing assumption:

(SA) A, B, b are matrices of rationale;

which was utilized also in (2 3. For the pure-integer case (s — 0),

this assianption (SA) takes the equivalent form

• (SA)’ A,b are matrices of integers

In addition, we assume throughout that G(0) 0 and r > 1 if e - 0.

The assumption G(0) = 0 is known to imply that (LP) below hai. a

finite value if it is feasible ( see e.g., [6 3) . The assumptions

made here will be utilized below without explicit citation.

In what follows, we also use the notation A — [~~
3
~] (cola) and

B — [b~~~] (cola).

j

I
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3.

Section 1: Value Caps and Quadratic Duals

We begin by stating a result (Theorem 1.2) which i~; useful in

what follows. The result depends on (2, Theorem 2.1 (2)] and requires

th. following lame, which is implicit in [7 , Leusna 1]. We provide a

self-contained proof here, since it is very short; for a generalization

of the leiiua below to multicriteria objective functions, see [7].

L 1.1: Suppose that z~ is an optimum for the linear program

- • 

s u n  dz

(1) subject to Dz = h

z > 0 (z =

and 0 satisfies

(2) > 0 isuplee ~ 0 for j =

- . * *Then if h’ = Dz , z is optimal for the linear program

-
, m m  dz4 .

(1) ’ subjec t to Dz — h’

z~~~0
- In additi on , an optimum in the dual to (1) is alsb optimum

r in the dual to (1) ’ .

Proof: The program (1) has the dual

(3) max Xh

• subjec t to AD ~ , d

IL 
_  

_ _ _ _ _ _ _ _  _  _~~~~~~~
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• Let A° be an optimum to (3), 50 that the following complementary

slackness condition holds:

(4) • z0(d - A 0D )= 0

From (2), (4) we obtain this version of complementary slackness:

(4) ’ z*( d_ X ~D ) 1 i O .

Now (4)’ is widely known to imply that z~ is optimal in (1)’

* 0 * 0 *
-
~~ In detail , from (4) ’ dz A Dz — A h’ , showing that z is optimal

in (I) ’ and ~
0 is optimal in the dua l to (1)’.

Q.E. D.

Theorem 1 • 2.:

There is a constant 6 ~ 0, independent of b in (MIP) , which

possesses the following property:

If (x°,y°) is an opt imum to the linear programming relaxation

r - sum c x + d y

(LP) .ubject to Ax + By b

x, y ~~~0

and (Ml?) is consistent, there is an optimum (x’, y’) to (NIP) with

(5) (xi, 7
1
) - (x° ,y°) ~

Proof: Let x~ be the vector of “integral parts” of 
. 

-

0 * 0 * 0x , i.e , x 1 =L x 4 j  for 3 l,...,r. I’ut b’ Ax + By . By Lemma 1,

* 0Cx , y ) is optimal in the program

auth cx + dy

(6) subject to Ax + By~~~b’

x, y ~~~~0

x integer

- •
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since it is optimal when th~ requlrement “x integer” is dropped in

• (6) , and yet x~ does satisfy the integrality requirement. From [ 2

Theorem 2.1 (1)3 there is a solution (x’,y1) to (~1IP) with

(7) (x1, y1) - (x*,y0) 
~ ~ 

C b - b’ + D

with C,D ) 0 independent of b,b’ . Using (7) , we have

(8) 1 (x1, y1) — ~x°,y°) 
~ I 

(x’,y t ) - (x*,y0) 
I 

+ (x*, y°) — (x°~ ~
°) 

I

< C I Z ( x _ L x ) a ~
3
~ I + D + r

< C  ( ~ ~ a~~~ ~ 
) + D + r

j= l .

By taking A to be the r.h.s. of (8), which is clearly independent of b,

the Theorem is immediate.
Q.E.D.

In what follows, L(b) is the value function of the linear

relaxation of (NIP) , i.e.,L(b) is the value of the linear program (LP)

as a function of the r.h.s. b. Clearly, G(b) > L(b) when b is a

feasible r.h.s. for (NIP).

Corollary 1.3:

(9) sup ( 1 G(b) - L(b) b feasible in (NIP) 3 < +

~~~g.L: From (5) and Theorem 1.2 ,

I o I 0G(b) - L(b) ~~c (x - x )  + c  (‘ -
~~~~ ) 

I

I o I o
~ I cIi~ 

- ~ I + ki ly - ‘ 1  ~ (l°I + Id i )  ~~<

Q.E.D.

_______________________________________________
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It is worth noting that Corollary 1.3 implies

C(b) — G(b’) I ~~~ 
IG(b) — L(b) + L(b) - L(b ’) I + I L(b’) - G(b’)

~~K l b - b’ 1 + 2 6 ,

where K is any constant for which

L(b) - L(b’) ~ K b - b’ I~
6 is the supremum defined in (9), and b,b’ are feasible. This improves [2,

Theorem 2.1 (2)], in that the modulus associated with l b-b’ can be taken

to be that of (LP), if one is willi ng to use 2 6 as a constant. Note,

however, that in a pure-integer program (s = 0) it may still be necessary

to retain a positive constant , if the modulus used is K of the linear

program (LP) . ~ constant of zero can be employed for s = 0 if the

modulus is K + 2 6 , since l b— b ’ l  m~ 0 implies lb-b ’l > 1 for integer

vectors b ,b’ .

For a function f : S -
~~ R, S any set, we define the epigraph

epi(f) by:

(10) epi(f) — [ (y,x) uS and y > f(x) 3
For a set T C R

u
, cony (T) respectiv:ly clconv (T) shall denote the

convex span reap. closed convex span of T. Compare with [10], [13].

Proposition 1.4:

(11) epi(L) = conv(epi(G))

Proof: Since L(b) < G(b) for b in the domain of C, and epi(L) isr
convex due to the convexity of the domain of L, the inclusion ( ~ ) in

(11) i. clear.

•‘

~~~~~~~
5’ 
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7.

To establish the inclusion ( C ) in (11), and thereby complete

the proof, let (z,b) a epi(L), so that z > G(b). Let (x°,y°) be an

optimum to (12), so that G(b) = cx° + dy°. When b is rational, we can assume
5 0 0 0 0  * 0 *

Cx , y ) is rational by (SA), so that (x ,y ) = (x ID, y ) with x > 0

a vector of non-negative integers, and D > 1 an integer.

SinceL(Db) = DL(b), as one easily proves using Lemma 1.1,

(x*, y°D) is optimal to (LP) with r.h.s. Db, and since x* is integral)
* 0

we see that (x , y D) is also optima l to (NIP) with r.h.s. Db. Then

G(Db) x~ + y°D L(Db) = DL(b) < D a, giving (Dz, Db) a epi(G). Since

( 0,0 ) a epi (G) ,

( Dz, Db)ID + (0,0) (D - l)ID = (z ,b) • conv(epi~C)) . H
For b irrational and (z,b)~ epi(L), we also obtain (z,b)e epi(G)

by the continuity of L and the fact that b can be approximated by

rational r.h.s. Q;E D

We next present a result which , in Rockafellar ’s duality

framework [11], [12], can be construed as a dual program for the pure

integer program (IP) , which is (NIP) for s = 0:

nun cx

(IP) subject to Ax = b

x ~ 0 and integer

- Let denote the L-th row of A and let bi 
denote the i-th

component of b. The quadratic Lagrangean for (IP) is defined 1o be

- -- -

~

---

~

,

~ 
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m i 2(12) L(x ,A ,p) (c - AA)x + p E (~ x - b~) + A b
i=1

and a dual problem for (I?) is

(QD) max inf L(x,X ,p)A p > O  x > 0

x integer

where A = ( Ai~ •••~Am ) a is a fixed vector.

Denote the value of (IP) by v (IP) end let v (QDx ) denote the

quantity defined in (QD)x . It is immediate that v(QDx ) < v(IP) ,

since for any p and any A

(13) inf L(x,A ,p) < inf (L(x ,X,p) Ax = b, x ~ 0 and integer)x > 0
x intege r

inf ~cx Ax = b, x >  0 and integer) = v(IP)

Theorem 1.5: Suppose that (IP) is consistent.

(1) For any A a Rm there is p (A ) 
~ 
0 such that for ., 2 p (A) we have

(14) L(x*,A ,p) = mm L(x,X ,p)

x > 0

x integer

if and only if x~ is optimal in (IP). Furthermore, p(X) is

independent of the r.h.s. b in (IP) . In particular , v(IP) = v(QDx )

(2) Let X be an optimum to the linear dual

max Ab

(15) subject to XA < c

~~~~~~~~~~ 

55 — 55- -5 - 5 ’ - -— ,~- -~— .5- - ‘--5 . ‘ - --5 5 5 5 5 - 5 _5_5__ .5_5’ 5 5 5 5 ~~~~ 55 5S5-~~~~~~~ 5-’~~~ ~~~~~~~~~~~~ 55—-—
5 5- - -  - -_ _ - — -~~-‘._~~~--~~~~~ - _ _  
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9.
of the linear programming relaxation (12) of (IP). Then if

p > G(b) - L(b) , (14) for A = X holds precisely if ‘x~ is optimal in
(IP) .

Proof:

(I) From [ 2, Theorem 2.1(2)], there is a constant £ > 0, independent
of b, for which

(16) G(b) - G(b ’) ~ € b - b’

when b’ is a feasible r .h s. in (IP) .

Note that , if b = (b11...,b) and b’ ~~~~~~~~~ are integer

vectors then

(17) b - b’ < E (b
1 

- b1
’)
2

i=l

where lb - b’I denotes the norm used in [2  ], specifically (see
1 2 , eqa (1.1)]) ‘

(18) I b - b’ = E b
1 

- b~V .  
i=1a

• Put p(X) = 1 + a + A . Then from (16) and (17), we
have, for any vector x > 0 of integers and p ~

(19) L(x ,A ,p) cx + A(b Ax) + p ( ~~x - b )2
- 

i=l i

~ G(b ’) + X (b - b’) + p J b - b’
~~G(b) - € lb - b’I - lx i lb - b’! + p J b  - b ’Jt~. if b’ ~ b where b ’ = Ax; while if b ’ b , we have

—5 ”-- —5 - ‘ - -
— - ‘-—s--- - ~~~~~~~~~~~ 

5’_SS_5- 5-~~~~~~555-~~~~~~~~~~~~~ , - 5-555 _ _ _ _ _
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(20) L(x , A ,p) — cx ~ G(b)

*Now a non-negative integer vector x is optimal in (IP) if and

only if b’ = b and cx
k 

— 0(b) . Hence by (20) if x~ is optimal,

L(x,A ,p) — G(b); while if is not optimal , we have L(x,A ,p) > 0(b)

• by (19) , (20). Therefore, (14) holds if and only if x~ is optimal

in (IP) , as claimed.

Regarding the “particular,” from (19) and (20) we have

inf (L(x ,A ,p) x j 0 and integer) = 0(b) = v(IP) by (19), (20).

Sinc~e v (QD
~
) < v(IP), this shows that v(QDx) v(IP).

(2) Suppose tha t p > 0(b) - L(b). Let x ~ 0 be an integer vector.

If b ’ = Ax is different from b, we obtain

(21) - L(x , ~ ,p) Cc - ~ A)x + p E (b~ - b~) 2 + b

H - 

? 0 + p + L ( b )

> 0(b) -

a 
(In (21) , we have used the fact that c - XA ~ 0 and xb = L(b)).  If

= b, we obtain (20).

Using (20),(21) as we used (19), (20) in proving the first part,

we establish the present claim.

• Q.E.D.

Rockafellar obtained a result of the type Theorem 1.5(1) for

convex programs (see [ 12 ,Theorem 3.5]). Our result is of course

easier to prove if the vector x is bivalent or bounded in (IP) .

— . — - - - . —
~~~~~~~  ~~~ — -—— .~~~~~- 55._~~~~~~~~-~~~~ ~~~~~~~~~~~~~~~~~~~ - - .~~~~-‘- - 5  -5 - —-—-~~~~~~~

‘ .~— ‘ - ~--- - -
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5 Theorem 1.5(2) is also more elementary than Theorem 1.5(1), since it

does not require the proximity resul ts of 1 2 J ,  while still indicating
s choice A of A for which p(X) is likely to be smaller than for general

As a consequence of Theorem 1.5, the value of the “quadratic dual”

(QD) - max max inf L(x,A ,p)
Agga p > O  x > 0

x integer

H is v(IP). Here the analogy to ordinary linear programming duality is

easier to see, since fixing p — 0 one easily establishes that the

program

(22) inf L(x ,A ,0)
XsR x > O

x integer

— max inf L(x ,X ,O)
A€Rm x > O

is the usual linear programming dual to (LP) for a = 0. However ,

:1 since A can be fixed in (QD) while still having v(IP) = v(QDx), the

dual (QD) actually has many features of a penalty method. 

-5 -5

- 
= ~~~~~~~~ —- - -— 

~~~~~~~~~ ~~~~~~~~~~~ T ‘ ‘
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Section 2: Subadditive Dual Programs

H 
• 

We recall that a function F is subadditive on a domain S if

(23) F(v + w) < P(v) + F(w)

is an identity for v,wsS (8ee [4], (5], [8]). Typically, S is required

to have OcS and to be closed under addition. In what follows, we take S

to be the set of all feasible r.h.s. for (IP), which is readily verified

to possess these properties. A particular class of subadditive functions

are those which are non-negative and bounded:

F(v) >0 for all waS
(24) E £ F is subadditive on S

• 5) and sup (F(v)lv€S) < +

We shall also need the concept of the upper directional derivative

(at zero) of a subadditive function F (see [ 5 ] ,  [ 8 ] ) :

(25) 1(v) lim sup [ F(Av) /X X’~~ O~ 3

We recall two results from previous work ; the first can be

proven directly.

Lesma 2,1: (See (5 ]). If F and F , are subadditive on S, so is
-

• 
1 £

F1 + ‘2 ’ In particular , for any subadditive function F and any
- AiR”, the function 0 defined by

I :. . 
(26) 0(v) = Xv + F(v)

is subadditive on S.

“4 -

5- — ‘ ‘ “ ‘~~~~~ ‘~~~~~~ “~ - —‘ —-.-- - : — —— — s — — -_ — ‘ —_ — .5— -5-5- 55 ———.5—— 5-
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L~~ fla 2 e 2 :  (See (5]).

If C is subadditive on S, then

- (27) E ~~~~~~~ + E I(b
(k)
)y ~~G(b)

j—l k—i

for any feasible solution (x,y) to (NIP).

- We shall also need one more le,img.

Lemma 2.3: If F is a non-negative, subadditive function on S, and

-

‘ I ~ 0 is any scalar, then the function H defined by

• (28) B(v) — mm ~ F(v),6 3
is in the class E of (24).

Proof: Let v,wsS. If F(v) ~ 6 or if F(w) ~ ~, (28) gives

(29) H(v + w) ~ 6 ~~ H(v) + H(w)

as F is non-negative. If F(v) and F(w) are < 6, then

(30) R(v + v) < F(v + v) < F(v) + F(v) — H(v) + H(w).
-

~~~~ a Since the two cases (29), (30) are exhaustive of the possibilities,

H ii subadditive. Clearly H is non-negative, and H is bounded by ;

hence HiE.
Q.E.D.

Theorem 2.4: Suppose tha t (NIP) is consistent.

-

• Let A be any feasible solution for the dual

‘ max Ab

(DLP-) subject to XA < c

- . A B E d

to (LP) . Then the subadditive program

‘V -

p.44

!_ ____________  
~

‘-— ‘- — - - , — -
~~~~~~~~~~

.-.- ---—-- -
~~~~~~
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max Xb + F(b)

(D ) ~~~~ + F(a~~~) ~ C~ , j  = l,...,r
A 

Ab~~~ ÷ ~(b~~~) < d~ , k = l ,...,s

F•r

has the vaiue v(MIP) of MIP , and moreover for any feasible solution

(x,y) to (NIP) and any feasible solution F to (1k,), we have (27) for C
as defined in (26).

Proof: The bound (2~) is simply a consequence of Lemmas 2.1 and 2.2.

This bound also shows that F(b) + Ab ~ v(MIP) for F feasible in (D
x),

as G(a~~~) ~ and ~ (b~
’
~) < dk for all j,k.

It suffices to prove that there is a solution H to (Dx) with

Ab + H(b) > v(MIP) . to this end, put
5 5 Ax + By - v,x,y > 0

(31) F(v) = inf (c-XA) x + (d - XB)y and x integer

F is subadditive since it is a value function (see (6 ]) and F is

non-ne1~ative since c - XA 0 and d - )~B > 0.

Let (x°,y°) be a feasible solution to (NIP) with
0 0

F (b) (c - AA) x0 + (d - AB)y ( (x ,y ) exists by [91). We have

4. 0 0v(MI P) ~ cx + dy and also

(32) cx0 + dy° — (c-XA)x° + (d-XB)y° + XAx° + XBy°

- = F(b) + Ab.

Set H(v) mm C F(v), F(b)3. Then v(MIP) -~ H(b) + Ab , as H(b) = F(b) .

By Lemma 1.8, NeZ. We need only prove that H is a feasible solution to

and we are done.

— -5 5 . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - 
- : - -

~~~~~~~~~~~ , -—
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However, 11(v) ~ F(v) for all v. Hence H(a~~~) ~ F(a~~~) ~ - Aa~~
for all j, and i(b~~~) ~ ~ (b~~~) ~ - Ab~~ for all k, the latter by (25).
Indeed , H is feasible in (D

x
)

Q.LD.
As a consequence of Theorem 2.4, if we define a dual program (D) to

be (D~) with X treated as a variable, we again have equality of values
v(D) vQI1P). Indeed, for any feasible solution A ,F to D, since FeE

it is easy to show that A is a solution to (DLP), and Theorem 2.4
applies. The proof of Theorem 2.4 shows that , by chosing A = A , with
A an optimian in (DLP), we can take P in (1~~) to have an upper bound equal
to the “integrality gap” 0(b) - L(b). This is the smallest bound

possible on F for any of the dual programs (D
x
).

Clearly, informatjo~ on the ~~~~ function GP (b) = G(b) - L(b) is of
value. By Corollary 1.3. it is a bounded, non-negative function.

Example: Consider the pure-integer program

minimize - ( x1 + x2 ÷ x3 )
1 0 -2(33) subJect to ( 

~ 
.f( X

2 
+ = b

~0J ~l 4r 
- 

x1 ,  x2 , x3 >Oand integer

for the three settings of b given by

(34) b~~ , ~~~ — (=2) , b~
3
~ — (=‘)

- ~~~~~~~~~~~~~ -
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For b — b0~, an optimum to (33) is (1,1,0), and this solution is

also the optimum to (LP); hence GP(b~
1
~) — G(b~~) - L(b~

’
~ ) = 0.

b — b~ 
~~
, an optimum to (33) and to (12) is (0,1,1), and again GP(b ) 0.

However, for b b~
3
~ an optimum to (12) is (0,4,1/2), and an optimum to (33)

is (l,2~1). Therefore GP(b(3~)1~ 4 + 4 1/2 = 1/2, and the

aubadditivity relation

• 

5 

(35) GP(b~
3
~)< CP(b

W) + GP(b~
2
~) = 0

clearly fails, even though b~
3
~ = b~

1
~ + b~

2
~

Despite the lack of global subadditivity, GP is subadditive in

certain regions that we now define. Put

(36) S~ Cbes I A is optima l in the dual program (DLP) to (U’))

For any specific b°eS, there is some A optima l in (DLP) . By Lemma 1.1,

A is still optimal in (DLP) for all beS such that b is a non-negative

combination of the columns which have positive variables in an optimal

solution to (LP) with r.h.s. b° . In specific, A is still optimal in

~PLP) for any r.h.s. b for which the optimal linear programming basis

for r.h.s. b° is still feasible, and hence if such a baS then also biS~

The preceeding remarks are intended to give an intuitive idea of

the nature and extent of • Roughly speaking, S~ includes all those

feasible r.h.s. b which have some c~~~on optimal linear programming basis

which is non-degenerate for some r.h.s. Clearly, if S~ ~ 0 then 0eS~

and is closed under addition, just as is true of S.. However, S~ can

!I

s-

~

TT ,_,,

~

, --

~

—’-—----

~

----
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be more extensive than the region in which one linear programming basis

is optimal. For instance , if there are dual non-degenerate linear

programming basic optima for some r.h.s. b, the corresponding ~ has S~
include both regions in which either basis is optimal.

More information on the sets S~ , as well as the important global
question of how they “fit together,” is given in the next result. In

what follows, dtm(T) is the dimension of a set T; faces of polyhedra are

.4 are defined in 1101, [13].

Theorem 2.5: Let ~, ~ be optima in the dual program (DLP) for

(possibly distinct) r.h.s. b.

(1) conv(S~) is a polyhedral cone, and cnv (S)fl S =

(2) cony(S) fl conv(S~) is a face ( possibly empty) of both cony(S)

and cony (S
n
) . -

Proof: By the Finite Basis Theorem (see [10], [13]), the dual

polyhedron has a representation of the form

(37) C A IAA < c,AB< dl- ~~~~~~~~~~~~~~~~ + cone

We may assume 9 > 0. Hence ‘the - linear form Ab is bounded

above subIec~t to \ A c , A 1% d i r  and onl y L I

(38) w~
1
~b < 0, j —

(these inequalities being vacuous if a = 0). When (38) holds, the

maximum of A b subject- to these constraints is max (v~~ b i =

‘a

‘4
ts

~

~~ — - . 
- 

. _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

---‘-
~~:~~~~~~~~ 

‘

~~~~~~~
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Therefore , a is ait optimm* in the dual program if and only if both (38)

holds and also

- 
ab> ~b

(39) ab > ~~~~ , i = 1,...,Q

(The inequality ab > ~ b is actually redundant here).

By the integrality hypothesis (SA), all the vectors ~~~~~~~~~~ in

(37) - 

~
39

~a can be assumed integral.

We now claim that cony(S) is precisely the polyhedral cone C~ of

b described by (38), 
~
39
~a

•

Since the defining inequalities (38), (39)~ of are in

integral quantities, Ca 
= cony ( beC b integral 3 . However , if

bCCa and b is integral, (LP) has a rational optimum with rationals

• having denominator D> 1 for an integral D, hence DbaS by Lemma 1.1.

Since Ca is a cone, we obtain Ca — conv( beCa baS 3 = cony(S), as

we claimed.

From this claim, if bt cony(S) fl S, then b.C and baS, so indeed

b(Sa •

Next , the claim shows that cony(S) fl conv(S~) is defined by (38) ,

J (39) plus the equalit7

(40) cib =

Now the equality (40) occurs as an inequality of (39)(, hence requi ring

(40) will give a face (possibly empty) of Ca = cony(S )

Q.E.D. 

~~~~~~~~ -:~~~~~ . :::i ~~ 
_i-:

_ 
- . -1
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- 
-

It follows from Theorem 2.5 that the polyhedral cone C of all b

satisfying (38) (i.e., those b for which (LP) is consistent) can be

represented as follows. If d — dim(C), let a(l),...,a(p) be distinct

points among { ~~~~~~~~~~~~~~~~~~~~~ of (37) for which dim(conv(Sa(i))) d,

such that i ~1r j implies 5a(i) ~‘ Sa(j)~ Then we have

(41) C — U cony(S )
i=l a(i)

and if i ~ j, then conv(S (i)~ ~ 
conv(S (i) ) is a face of conv(S

~(i)
) with

dimension not exceeding (d - 1).

Theorem 2-6:

If X is an optimum to (DLI’), then OP is subadditive on S~ .

In fact, for beS— we haveA — — A x + B y = b , x,y > o
• (42) GP(b) = am .

~ 
(c - XA)x + (d - XB)y( and x integer

Proof: Exactly as in (31), (32), we see that if the minimum on the
0 0r.h.s. of (42) is attained at (x ,y ), we have

(43) 0(b) = cx0 + dy° — (c - iZA)x° + (d - ~ B)y° + Xb

For be9~, we have L(b) Xb. Using this and (43), we obtain

GP(b) — (c - AA)x° + (d - XB)y°, which is (42), and we recall [6 1

that value functions are subadditive. 
Q.E.D.

_______ 

-
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We conclude with an alternate representation of the gap function

GP as the finite limit of value iteration applied to any “initial” non-

negative subadditive function V0 — F which does not exceed GP, and show

that, at each step of value iteration, the current aubadditive function

~n 
(see below) is “improved” (see Theorem 2.8). The specific value

iteration here is the one corresponding to a shortest-path problem in a

certain graph, as formulated in a dynamic programming context; we next

describe the graph, which is closely related to Gomory’s “round-off-

problem” (4 ] and involves enumeration on the non-basic variables of an

£.p. tableau.
L

Let the linear progrémming relaxation of (II’) be solved as described

previously, and let A — I U~V ] be partitioned into basic and non-basic

columns. Note that (IP) is equivalent to

am cu + ( c v cu A ) x v

(IP)’ subject to x
~~
+ ~x, -

x
~~ , x~~

> 0 a n d  integer

where — U 1V and b = U tb. By dual optimality, we have ~,‘ = c,~ - c~A > 0.

For notational purposes, we write the columns of A as follows:

(44) - — [;
(l), ;(2),...,;(t)]

- 
- where t — r - a ~ .0. Clearly, b ~ 0. Note that L(b) - c1,B~~b = c~,b.

In what follows, we assume baS, i.e., (IP) is consistent. 
-

~ I
p’4

_________________ --5— —5—--- -5.—- -
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The node set P of the graph G = (P ,E) cons ists of all vectors

aveR having a representation

t _ (j)
(45) v u+E P~~a

j=1

where the P~ are integers and u is a vector of integers. As regards

the edge set E of 0 = (P,E), a directed arc (v ,w) exists for v,vaP

if and only if either
-5 

(46a) v — ~~~~~~+ w f o r s o m e j = 1 ,..., t

(46b) v = ek +w for some unit vector ek, k

In (46a), the length of this arc is the j-th component of y . In

(46b), the length of this arc is zero. (If multiple arcs exist from

v tow , these can be replaced by one possessing minimum length). Clearly,

the set P is a group under addition and beP.

In addition to nodes and edges, there is a distinguished subset

T ~ P of the set of nodes F, consisting of those ucP which are vectors of

non-negative integers. Clearly, T ~ 0, seP, and there is a path from baP

to T, since if (x,d*, xv*) is a feasible solution to (II’), then

b * x + M c y
* shows bcP and x~~ . b _ A x.~,*d escrib e sap a t h from b to

* —la T. More generally, there is a path from U veP to T if and only

if (IF) is consistent with r.h.s. v.

Let U1(v) be the length of a shortest path from v to T, for yaP,

where we set 111(v) = + ~ if no path exists from yaP to T.

~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ____________________- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~, .
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Let ~Z be the optimum in the linear dual to (IP)’ . The next

resul t is elementary , and we omit its proof.

Proposition 2.7: If vaSt 
then 0(v) = Xv + LH (U 1v) and

(47) LII(U 1v) GP(v)

The following is a value-iteration scheme which begins at an

“initial function ” F = F defined on P. Give n F , we obtain

Fn+l by:

, if v€T
€i8) F~~1(v) = -

~ 
—( )( a m  ( Y ~~+ F ( v - a ~~~) 3 , if v$T

In what follows, for two functions F and G, we shall write

F < C to abbreviate F(v) < G(v) for all yaP.

Recall that a function F ts eubadditive on P if -

(49) F (v + w) ~ F (v) + F (w) for v ,wcP.

See also [4], [6], [83 .

Theorem 2 8 :

If F0 F is a subadditive function, and 0 < F < Ui then every

F
~ 
defined by (48) is subadditive and F~ < UI. Also ,

00) F0 < F1 < F2 <

_  

-5 

~— ,. . 
_ _ _
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If, in addition, the vector y is strictly positive, then for

some finite N we have

(~1) F
N

(v) = LH(v)

whenever

S Proof: We show F
n < LII by induction on n. For n = 0 , this is an

hypothesis. To go from n to (n+l), if vaT then F +1(v) = 0 = 1.11(v),
,~

while if v4T then by (48) and F~ ~ LII

(52) F~÷1(v) 
~ j=l,...,t 

Cv i + LR( V - ;(i) ) 3 = 1.11(v)

F~ is non-negative for n = 0 by hypothesis. To go from n to

(n-fl) , if veT then Fn+i (V) = 0 while by (48) for v~T we have by

induction

(53) F~~1(v) 
= + F(v - ;oi) ) > 0 + 0 = 0

for at least one index k = 1,...,t . Hence, all F are non-negative.

is subadditive for n 0 by hypothesis. To go from n to

(n+1) , we first u~e the hypothesi zed subadditivi ty of F to proven

(54) F~~1(v) F (v)

If vET , then 0 = LH(v) > F (v)  > 0 and F 1(v) 
= 0 by (48) , hence

(54~ holds. If v$T , then :ince v (v - 
~~~~~ for j  -- 1,... , t ,

subadditivity of Fd gives

4,

_ _ _ _ _  _ _ _ _ _ _ _ _
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(55) F (v) ~ F ( a ~
3
~)+ F ( v  -

~ v 1 
+ F~~~~(V — ~~

(E)) , j =

using F~(a~
1
~) < LH(a~

1
~ ) < v 1, j = l ,...,t. Now

(48) and (55) give (54) .

Using (54), and supposing F subadditive, if v + w~T then

Fn-~1(v + w) = 0 
~ F~+1(v) + Fn+i(W) since Fn-~1 is non-negative.

However , if v-fw 4T , then by (48) we have

(56) F
n-41

(v + w) 
~ 

+ F ( v  + w -

~ 
+ F ( v  - 

~~
) + F ( w)

= F
n-~1

(v) + F (w) < F +1(v) + F +1(w)

-
. In (56) , we have assumed v$T WLOG ( for v ,weT implies v + weT)

and have chosen k 80 that F
n-~1

(v) = 

~k 
+ 
~
‘
n~
’ - ;

(k)
) by (48).

Clearly, (56) shows tha t Fn-1.i is also subadditive and completes our

inductive proof that all F~ are subadditive . Then (50) follows

since (54) is implied by the subadditivity of F~ .

Let us now assume, in addition , that v is strictly posi tive ,

and let a > 0 be chosen so tha t > e for j  = 1,...,t. We now prove

by induction on n that

- - 5  —~.i::: -’~ 
——— --- -5- --5— - 5- - --S.--- _-55-_~~ 5 —-5— — -- ——,-—---- --—--- 
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(57) 
- 

F~~1(v) > mm C ne , LH(v) 3

F o r n = O , ( 69) follovs s t n c e F = F > 0 .  To go fr o i nn t o (n+l) , if

v~T then F~~1(v) — 0 and 1.11(v) = 0. If V~T , then by (48)

(58) - F~~1(v) = + F ( v  -

—(k’for acme k = 1,...,t. In the event that Fn(V - a ‘)> (n-l)s, we

have from 08) and ~ a that Fn-f1(v). > mm ( n~, LH(v) 3. On the

other hand , if 
~~~ 

v - a (k)) > UI (v - a (k) ), we have from (58)

~ 9) P (v) > mm Cv + LH(v - ~~ )3 = LH(v)
— , .• •  

-

> mm [nc , U1(v)3 .

This completes our proof of (57).

Let N be chosen to that Na > ~, where t~ is the Lh.s. in (9)

of Corollary 1.3. By Proposition 2. 7 , if v is a feasible r.h.s. tfleit

LH(v) = GP(v) < Na , so mm CN e, LH(v) ) — LH(v) . As FN < UI , (57) gives

FN (v’) -= 111(v) for v feasible , and (51) holds.
- 

Q.E .Pi .

- December 10, 1976
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